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An extension of the far-field x-ray diffraction theory is presented by the introduction of a distorted object for
calculation of coherent diffraction patterns in the near-field Fresnel regime. It embeds a Fresnel-zone construc-
tion on an original object to form a phase-chirped distorted object, which is then Fourier transformed to form
a diffraction image. This approach extends the applicability of Fourier-based iterative phasing algorithms into
the near-field holographic regime where phase retrieval had been difficult. Simulated numerical examples of
this near-field phase retrieval approach indicate its potential applications in high-resolution structural investi-
gations of noncrystalline materials.
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The success of structural science today is largely based on
x-ray diffraction from crystalline materials. However, not all
materials of interests are in crystalline forms; examples in-
clude the majority of membrane proteins and larger multi-
domain macromolecular assemblies, as well as many nano-
structure specimens at their functioning levels. For these
noncrystalline specimens, imaging at high spatial resolution
offers the only alternative to obtain any information on their
internal structures. In principle, imaging and diffraction are
two optical regimes that are intrinsically interrelated based
on Fresnel diffraction for wave propagation, defined as fol-
lows under the first-order Born approximation:1

F�x,y� =
i

�
� � q�X,Y�

e−ikr

r
dX dY , �1�

where F�x ,y� is the diffracted wave field amplitude, q�X ,Y�
is the transmission function through a thin object, r= �z2

+ �x−X�2+ �y−Y�2�1/2 is the length of the position vector
from point �X ,Y� on the object plane to point �x ,y� on the
detector image plane, � is the x-ray wavelength, and k
=2� /� is the wave number.

Although widely used in optical and electron diffraction
and microscopy,1 the concept of Fresnel diffraction �1� has
only recently been recognized in the broader x-ray diffrac-
tion community where traditionally far-field diffraction plus
conventional radiography dominated the x-ray research field
for the past century. This is because that an essential ingre-
dient for Fresnel-diffraction-based wave propagation is a
substantial degree of transverse coherence in an x-ray beam,
which had not been easily available until recent advances in
partially coherent synchrotron and laboratory-based sources.

Coherent wave field propagation based on Fresnel diffrac-
tion Eq. �1�, where an experimentally measured image is
given by intensity I�x ,y�= �F�x ,y��2, is usually categorized
into two regimes: the near-field Fresnel or in-line holography
regime and the far-field Fraunhofer regime. Compared to
conventional radiography, an advantage of coherent imaging
in the near-field regime is its ability to detect weakly absorb-
ing features in an object due to phase-contrast or phase-
enhanced Fresnel diffraction effects.2 In general, however, it
is less straightforward to retrieve the original object from a

near-field image, because of the very effect of Fresnel inter-
ference fringes that often exist in the image, and substantial
effort has been devoted recently to the various methodolo-
gies of phase retrieval in the Fresnel regime. These include
transport of intensity equation method3–5 based on wave
propagation in free space, and the algorithm using self-
imaging principle for different spatial frequencies at different
object-to-detector distances.6 However, a simple phasing al-
gorithm that functions in a wide range of object-to-detector
distances is still desired,7 especially in the so-called interme-
diate regime of in-line holography.

For far-field Fraunhofer diffraction, the situation is much
simplified because of a direct Fourier transform relationship
between an object and a diffraction pattern. It has been
shown recently8–13 that an oversampled continuous diffrac-
tion pattern from a nonperiodic object can be phased directly
based on real space and reciprocal space constraints using an
iterative phasing technique originally developed in
optics.14–16 The oversampling condition requires a diffraction
pattern be measured in reciprocal space at a Fourier interval
finer than the Nyquist frequency used in all discrete fast Fou-
rier transforms. Once such an oversampled diffraction pat-
tern is obtained, the iterative phasing method starts with a
random set of phases for diffraction amplitudes, and Fourier
transforms back and forth between diffraction amplitudes in
reciprocal space and density in real space. In each iteration,
the real space density is confined to within the finite speci-
men size and the square of diffraction amplitudes in recipro-
cal space is made equal to the experimentally measured in-
tensities. This iterative procedure has proved to be a
powerful phasing method for diffractive imaging of nonperi-
odic specimens at perhaps close to atomic resolution.17

In this article, we present a universal method for the
evaluation of wave-field propagation and for the phase re-
trieval of an oversampled diffraction pattern in both the far-
field and the near-field regimes based on the iterative tech-
nique that has been used for far-field diffraction. The key
component in our method is the introduction of a phase-
chirped distorted object in Fresnel equation �1�, which makes
it valid for all wave propagation regimes, from the near-field
to the far field �Fig. 1�. This method has been introduced18 in
optical information processing and holography, but to our
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knowledge has not been applied in x-ray diffraction and im-
aging.

To introduce this method, we apply the standard paraxial
or small-angle approximation and expand in Eq. �1�, r= �z2

+ �x−X�2+ �y−Y�2�1/2�z+ ��x−X�2+ �y−Y�2� /2z, so that Eq.
�1� becomes

F�x,y� =
ie−ikz

�z
� � q�X,Y�e−ik���x − X�2+�y − Y�2�/2z	dX dY .

Further expanding the terms in the exponential results in

F�x,y�

=
ie−ikR

�R
� � q�X,Y�e−�i�/�z��X2+Y2�e−�i2�/�z��xX+yY�dX dY ,

where R= �x2+y2+z2�1/2. We now define a new distorted ob-
ject q̄�X ,Y� as follows:

q̄�X,Y� 
 q�X,Y�e−�i�/�z��X2+Y2� �2�

and the scattered wave field F�x ,y� can then be expressed by
a direct Fourier transform of this distorted object

F�x,y� =
ie−ikR

�R
� � q̄�X,Y�e−�ik/z��xX+yY�dX dY . �3�

Equation �3� clearly shows that by embedding Fresnel
zone construction into the distorted object, Eq. �2�, a near-
field diffraction pattern can be simply evaluated by a Fourier
transform just as in the far-field approximation, with a mo-
mentum transfer �Qx ,Qy�= �kx /z ,ky /z�. Furthermore, it re-
duces to the familiar far-field result when z�a2 / �4��, where
a is the transverse size of the object, since the extra Fresnel
phase factor in Eq. �2� can then be approximated to unity. In
general, the number of Fresnel phase zones of width � de-
pends on distance z and is given by Nz=a2 / �4�z�. Therefore,
Eq. �3� can be used both in the near-field and in the far-field
regimes, and this traditional but somewhat artificial partition
of these two regimes is easily eliminated. Examples of cal-
culated diffraction patterns at different distances are shown
in Fig. 2.

Perhaps one of the most useful applications of the new
distorted object approach is that it extends the Fourier trans-
form based iterative phasing technique that works well in the
far field, into the regime of phasing near-field Fresnel dif-
fraction or holographic images. Because the distorted object
q̄�X ,Y� differs from the original object q�X ,Y� by only a
phase factor, which is known once the origin on the object is
chosen, all real-space constraints applicable on q�X ,Y� can
be transferred onto q̄�X ,Y� in a straightforward fashion. In
fact, most existing iterative phasing programs may be easily
modified to accommodate the distorting phase factor in Eq.
�2�.

To illustrate our method, we have performed numerical
simulations to calculate the Fresnel x-ray diffraction patterns
at several distances using the distorted object approach, Eq.
�3�, and to reconstruct the original object by iterative phase
retrieval. These results are presented in Fig. 3. The specimen,
shown in Fig. 3�a�, is assumed be a 10 �m�10 �m square
sample made of carbon with its maximum thickness of
10 �m, which leads to a maximum phase difference of 1.87
rad for �=1 Å x rays. The maximum absorption contrast is
only 0.1% for this specimen, which is very close to being a
pure phase object. The corresponding distorted objects with
Fresnel phase zones are shown in �b�, �c�, and �d�, con-
structed using Eq. �2�, and their diffraction patterns calcu-
lated using Eq. �3� at an oversampling ratio of 2�2 are
shown in �e�, �f�, and �g� for distances z=5, 20, and 50 cm,
respectively. The area detector size scales with the object-to-
image distance as indicated by the scale bar in each image.

Phase retrieval for each diffraction pattern is performed
using an iterative phasing program developed at CHESS, and
the results are shown in Figs. 3�h�, 3�i�, and 3�j�. The pro-
gram takes into account real space constraints such as finite
size or finite support, and assumes positivity on the imagi-
nary parts of the object transmission function q�X ,Y�. As can
be seen, the reconstructed object images agree well with the
original object in all these three cases, showing the validity
of distorted-object phasing approach. The map correlation
coefficients for the three cases are 0.9998, 0.9954, and
0.9943, respectively, indicating that the recovered image
quality is slightly better for near field than that using diffrac-
tion patterns taken farther away from the object. This effect
can be seen more clearly when statistical Poisson noise is
included in the simulation as illustrated in Fig. 4.

FIG. 1. �Color online� Schematic illustration of coherent x-ray
wave propagation with a distorted object approach both for the
near-field Fresnel diffraction, where an object extends into multiple
Fresnel zones �solid lines� and for the far-field Fraunhofer diffrac-
tion, where an object occupies only the center of the first Fresnel
zone �dashed lines�.

FIG. 2. �Color online� Simulated diffraction amplitudes
�F�x ,y��, of an amplitude object �a� of 10 �m�10 �m, with �
=1 Å x rays, at image-to-object distance �b� z=2 mm and �c� z
=�, using the unified distorted object approach Eq. �3� with Nz

=500 zones in �b� and Nz=0 in �c�. Notice that the diffraction pat-
tern changes from a noncentrosymmetric image �b� in the near-field
that resembles the original object, to a centrosymmetric diffraction
pattern �c� in the far field.
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In addition to the map quality, it is also noticeable �see
Fig. 4� in our simulations that the convergence in iterative
phase retrieval is much faster in the near field with a few
Fresnel zones as compared to the far field. We attribute this
mainly to the ’twin’ image problem due to the intrinsic Frie-
del symmetry that exists in any far-field diffraction pattern if
anomalous scattering is neglected. This problem does not
exist in the near field since near-field diffraction patterns are
always noncentrosymmetric for acentric specimens. Thus in
practical coherent imaging experiments it may be more ad-

vantageous to measure diffraction patterns not in the true far
field, but closer to the specimen in the holographic regime.

In very near-field imaging, the spatial resolution is usually
limited by the area detector pixel size. This is not the case in
the intermediate holographic regime that is being considered
in Fig. 3, because diffraction effects dominate the holo-
graphic images. In the example given in Fig. 3�f� at z
=20 cm, a detector with a pixel size of 1 �m is used to
achieve image reconstruction at 0.1 �m resolution. In prac-
tice, the detector pixel size is determined by the oversam-
pling requirement �x=�z /2a, for 2x oversampling of an ob-
ject of size a, very much the same as in the far-field case.

It is worth noting that in Eq. �2�, the origin �0,0� of the
distorting phase factor can be set arbitrarily according to
convenience. Our numerical experiments have shown that
this choice of origin can be used as an adjustable parameter
and exploited in the iterative phasing algorithm. In some
cases multiple choices of different origins, although not nec-
essary, can be used for faster convergence in the phasing
program. Further investigations are planned to improve the
phasing capability of the distorted object approach by mak-
ing use of multiple origin choices.

Finally, one of the issues in phasing a continuous diffrac-
tion pattern is the missing data problem due to a central
beam stop used in far-field diffraction.19 In the near field
regime, however, one would like to record the direct image
part of the overall Fresnel diffraction pattern. This may be
done with an area detector with a large dynamic range, or by
multiple exposures with and without a central beam stop.

In summary, we have employed a phase-chirped distorted
object formulism to evaluate and to phase coherent x-ray
Fresnel diffraction patterns from nonperiodic specimens. By
simply embedding in the original object a phase factor ac-
cording to Fresnel zone constructions, our new approach is

FIG. 3. �Color online� Examples of calculated near-field diffrac-
tion patterns and phase retrieval using the distorted object approach.
�a� Phase map of a 10 �m�10 �m object made of carbon with a
maximum thickness of 10 �m. �b�–�d� Phase maps of distorted ob-
jects at z=5, 20, 50 cm, corresponding to 5, 1.25, and 0.5 Fresnel
phase zones, respectively. �e�–�g� Corresponding Fresnel diffraction
patterns with an oversampling ratio of 2�2, using 1 Å x rays. The
intensity scale is normalized to range from about 10−8 to 1 as indi-
cated by the color scale bar. �h�–�j� Reconstructed objects using the
iterative phasing method combined with the distorted object
approach.

FIG. 4. �Color online� Correlation coefficient between recon-
structed phase map and the original phase map in Fig. 3�a� at dif-
ferent specimen to detector distances, plotted as a function of num-
ber of iterations in the iterative phase retrieval using the distorted
object approach. Statistical Poisson noises are included in all dif-
fraction patterns in these simulations. All these diffraction patterns
are assumed to have the same total integrated intensity of 4.4
�107 photons, while the maximum intensity in the diffraction pat-
terns are 7.6�105, 6.2�106, 8.8�106, and 1�107 photons, for z
=20 cm, 50 cm, 100 cm, and far-field, respectively.
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valid continuously from the near-field to the far-field re-
gimes, denoted only by the number of zones determined by
wavelength, object size, and object-to-image distance. Nu-
merical phase retrieval simulations using the method demon-
strate significant advantages of near-field diffraction in the
intermediate holographic regime, as compared to the far-field
and the very near-field results. Although the algorithm has
been developed for coherent x rays, the distorted-object con-
cept can be universally applied to other diffraction and im-
aging fields such as using visible light, electrons, and neu-
trons. It is our hope that our results will stimulate further
developments in the area of diffractive imaging for high-
resolution structural studies of noncrystalline materials.
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